Global sensitivity analysis of stochastic computer models with joint metamodels

نویسندگان

  • Amandine Marrel
  • Bertrand Iooss
  • Sébastien Da Veiga
  • Mathieu Ribatet
چکیده

The global sensitivity analysis method used to quantify the influence of uncertain input variables on the variability in numerical model responses has already been applied to deterministic computer codes; deterministic means here that the same set of input variables gives always the same output value. This paper proposes a global sensitivity analysis methodology for stochastic computer codes, for which the result of each code run is itself random. The framework of the joint modeling of the mean and dispersion of heteroscedastic data is used. To deal with the complexity of computer experiment outputs, nonparametric joint models are discussed and a new Gaussian process-based joint model is proposed. The relevance of these models is analyzed based upon two case studies. Results show that the joint modeling approach yields accurate sensitivity index estimatiors even when heteroscedasticity is strong.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint pricing, inventory, and preservation decisions for deteriorating items with stochastic demand and promotional efforts

This study models a joint pricing, inventory, and preservation decision-making problem for deteriorating items subject to stochastic demand and promotional effort. The generalized price-dependent stochastic demand, time proportional deterioration, and partial backlogging rates are used to model the inventory system. The objective is to find the optimal pricing, replenishment, and preservation t...

متن کامل

Global sensitivity analysis of stochastic computer models with generalized additive models

The global sensitivity analysis, used to quantify the influence of uncertain input parameters on the response variability of a numerical model, is applicable to deterministic computer code (for which the same set of input parameters gives always the same output value). This paper proposes a new global sensitivity analysis method for stochastic computer code (having a variability induced by some...

متن کامل

Uncertainties Assessment in Global Sensitivity Indices Estimation from Metamodels

Global sensitivity analysis is often impracticable for complex and resource intensive numerical models, as it requires a large number of runs. The metamodel approach replaces the original model by an approximated code that is much faster to run. This paper deals with the information loss in the estimation of sensitivity indices due to the metamodel approximation. A method for providing a robust...

متن کامل

Global sensitivity analysis of computer models with functional inputs

Global sensitivity analysis is used to quantify the influence of uncertain input parameters on the response variability of a numerical model. The common quantitative methods are appropriate with computer codes having scalar input variables. This paper aims at illustrating different variance-based sensitivity analysis techniques, based on the so-called Sobol’s indices, when some input variables ...

متن کامل

Liu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors

In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistics and Computing

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012